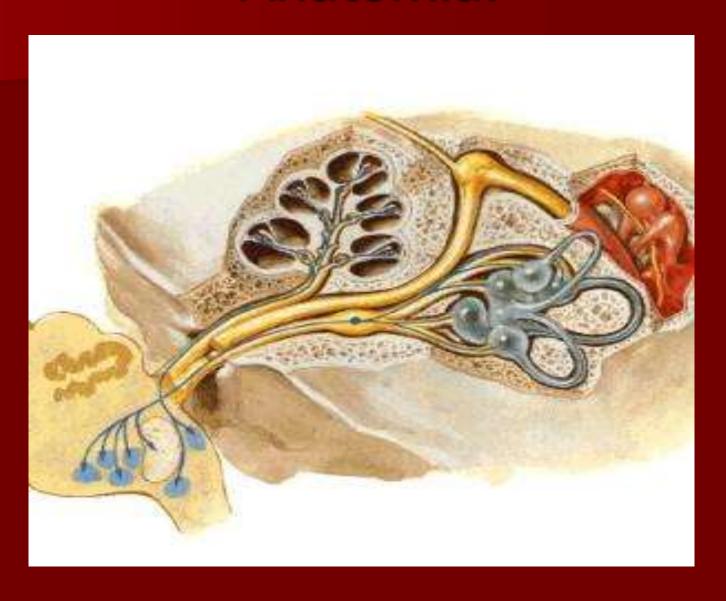
Sistema Vestibular

Universidad Central de Venezuela Facultad de Humanidades. Escuela de Psicología. Cátedra de Neurociencias. Prof. Salvador Rivera.

Funciones.


- Respuesta a la aceleración rotatoria.
- Orientación espacial.
- Respuesta a la aceleración lineal
 - Utrículo y sáculo.
- Contribuye al equilibrio del cuerpo.
- Permite mantener la cabeza en posición erecta.
- Contribuye junto con ciertas funciones de la visión al ajuste de los movimientos oculares para compensar los de la cabeza.

Anatomía.

Los componentes anatómicos del sistema vestibular se hallan insertos en el hueso temporal como un componente del oído interno.

Sus elementos principales son los sacos vestibulares y los canales semicirculares.

Anatomía.

Anatomía.

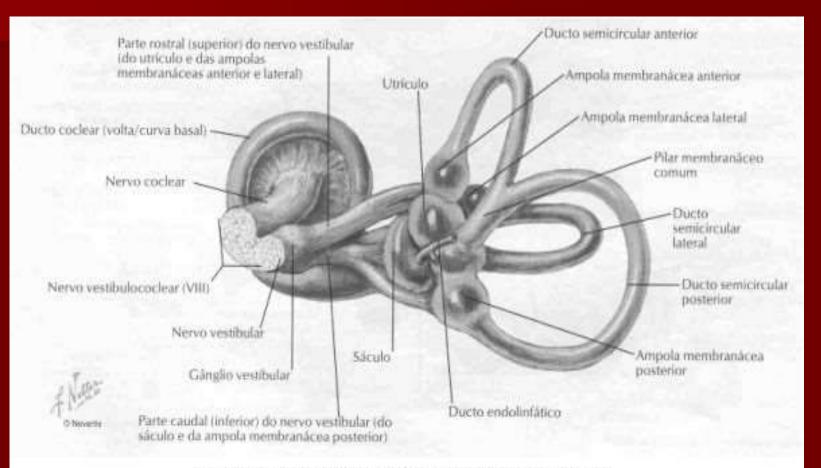


Figura 3. Labirinto membranáceo direito com nervos: vista póstero-medial Fonte: Netter. Atlas de anatomia humana, 2000 lâmina 90.

Anatomía

■ Canales semicirculares.

- Arcos óseos que contienen una membrana y están llenos de líquido.
- Responden a la aceleración angular, cambios de rotación de la cabeza (pero no a la rotación constante o a la aceleración lineal).

Canales Semicirculares.

- Se encuentran en tres planos de la cabeza.
 - Sagital, transversal y horizontal.

Estructura:

- Un canal membranoso que flota dentro de uno óseo.
- Entre el canal óseo y el membranoso (perilinfa).
- Dentro del canal membranoso (endolinfa).
- Existe una ampliación del canal que se denomina ámpula o ampolla.
- En cada ampolla se localiza la cresta ampular , allí se encuentran los receptores sensoriales, células ciliadas y las células de sostén insertadas en una cúpula.
- Las prolongaciones de las células ciliadas están insertas en la cúpula y sus bases en contacto con la rama vestibular del VIII par craneal.

Anatomía

■ Sacos Vestibulares.

- Especie de elevaciones óseas en la base de los canales semicirculares, son diferentes a las ampollas o ámpulas.
- Los sacos vestibulares.
 - Son dos.
 - Llamados Utrículo y Sáculo.
 - Informan al cerebro sobre la aceleración lineal.
 - Sensibles a la fuerza de gravedad (tasa basal de disparo) e informan al cerebro sobre la orientación de la cabeza.

Anatomía

- **Sacos Vestibulares.**
 - Contienen la "Maculas", organós otolíticos

Aparato Vestibular

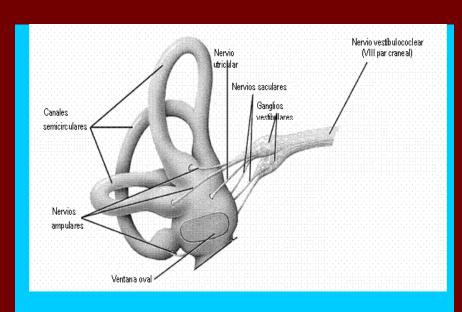
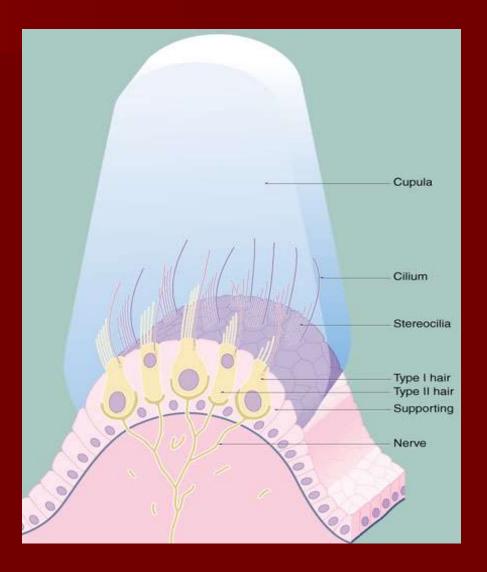



Figura 1. Esquema del aparato vestibular humano en donde se indica la inervación de cada uno de los órganos vestibulares (Tomado y modificado de http://www.gmw.ac.uk/~ugha014/vestibular%20stuff/vestibular3.html).

Fisiología de los canales semicirculares

- Todos los canales operan con el mismo principio.
- Principio del agua en vaso.
 - Inicio movimiento el agua se desplaza en sentido contrario.
 - Alcanza la misma velocidad.
 - Al detenerse la fuerza inercial mantiene el movimiento en la misma dirección.

Fisiología de los canales semicirculares

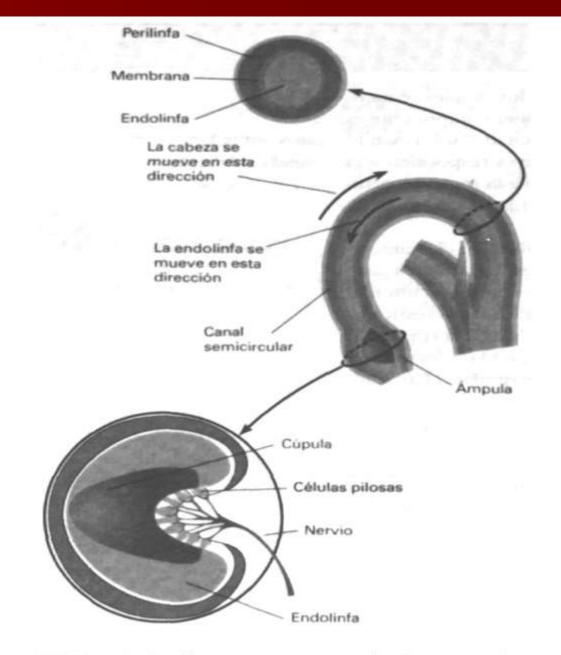
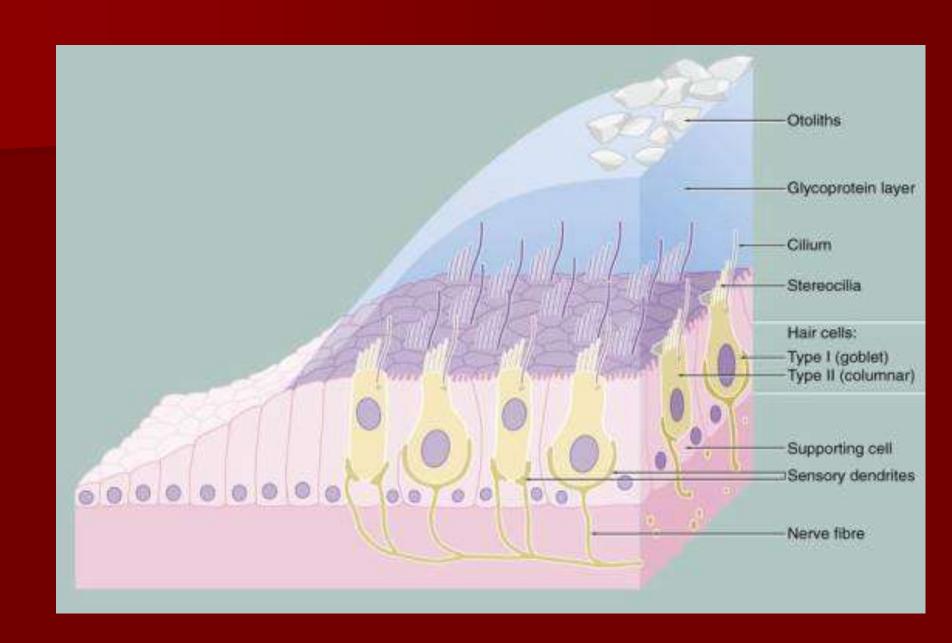


FIGURA 7.13 Secciones transversales de un canal semicircular.

Fisiología de los canales semicirculares

Movimiento hacia la ampolla (ampulimetro) causa despolarización.


Movimiento en sentido opuesto a la ampolla (ampulifugo), causa hiperpolarización.

Fisiología del Utriculo y Saculo

- Trabajan diferente a los canales semicirculares.
- El tejido receptivo contiene células pilosas, insertos en una masa gelatinosa que contiene las Otoconias (Otolitos).
- Las otoconias están formadas de Carbonato de Calcio.
- El peso de la masa gelatinosa hace que cambie de posición con los movimientos de la cabeza y por ende el movimiento de los cilios de las células receptoras.

Fisiología del Utrículo y Sáculo

Via Vestibular

- Potencial de receptor a nivel de las células ciliadas del Utrículo, Sáculo y canales semicirculares.
- Potencial de acción en prolongaciones dendríticas de la célula nerviosa.
- Soma neuronal en el ganglio de Scarpa (19.000 neuronas).
- Prolongaciones axónicas se unen a las prolongaciones del ganglio de Corti (Vía auditiva).

Vía Vestibular

- Entran por la cara anterior del tallo encefálico a nivel de la fosa lateral.
- La vía vestibular se dirige a los núcleos vestibulares (anterior, posterior, medial, lateral).
- Un contingente de axones provenientes del ganglio de Scarpa se dirigen al Cerebelo directamente (función de equilibrio).
- De los núcleos vestibulares parten eferencias:
 - Cerebelo.
 - Medula Espinal.
 - Corteza cerebral temporal (no existe aun trayectoria especifica)

Vía Vestibular

- Cada nervio vestibular termina en el conjunto de núcleos ipsolateral.
- La mayoría de las fibras de los conductos semicirculares terminan en los núcleos vestibulares superior y medial y se proyectan sobre los núcleos del III, IV y VI par.
- Las fibras del utrículo y el sáculo se proyectan al cerebelo, sust. reticular de Deiters y formación reticular.

Conexiones Vestibulares

- Proyecciones corticales:
 - Relacionadas responsable de los vértigos.
- Proyecciones al bulbo raquídeo:
 - Con las nauseas y vómitos en los mareos.
- Proyecciones a los núcleos somatomotores del tallo:
 - Relacionados con la posición erecta de la cabeza.

Conexiones Vestibulares

- Proyecciones a los núcleos somatomotores III, IV y VI par.
 - Control directo sobre movimientos oculares, para compensar movimientos súbitos de la cabeza, lo cual mantiene una imagen retiniana estable, se denomina Reflejo Vestíbulo-Ocular.

Pruebas Vestibulares

- •TRASTORNOS VESTIBULARES.
 - •VERTIGO.
 - •NAUSEAS.
 - •VOMITOS.
- •PRUEBA DE BARANY.
- •PRUEBA CALÓRICA.